Primal interface formulation for coupling multiple PDEs: A consistent derivation via the Variational Multiscale method

نویسندگان

  • Timothy J. Truster
  • Arif Masud
چکیده

This paper presents a primal interface formulation that is derived in a systematic manner from a Lagrange multiplier method to provide a consistent framework to couple different partial differential equations (PDE) as well as to tie together nonconforming meshes. The derivation relies crucially on concepts from the Variational Multiscale (VMS) approach wherein an additive multiscale decomposition is applied to the primary solution field. Modeling the fine scales locally at the interface using bubble functions, consistent residual-based terms on the boundary are obtained that are subsequently embedded into the coarse-scale problem. The resulting stabilized Lagrange multiplier formulation is converted into a robust Discontinuous Galerkin (DG) method by employing a discontinuous interpolation of the multipliers along the segments of the interface. As a byproduct, analytical expressions are derived for the stabilizing terms and weighted numerical flux that reflect the jump in material properties, governing equation, or element geometry across the interface. Also, a procedure is proposed for automatically generating the fine-scale bubble functions that is inspired by a performance study of residual-free bubbles for the interface problem. A series of numerical tests confirms the robustness of the method for solving interface problems with heterogeneous elements, materials, and/or governing equations and also highlights the benefit and importance of deriving the flux and stabilization terms. 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A unified formulation for interface coupling and frictional contact modeling with embedded error estimation

We present a derivation of a new interface formulation via a merger of continuous Galerkin and discontinuous Galerkin concepts, enhanced by the variational multiscale method. Developments herein provide treatment for the pure-displacement form and mixed form of small deformation elasticity as applied to the solution of two problem classes: domain decomposition and contact mechanics with frictio...

متن کامل

A framework for residual-based stabilization of incompressible finite elasticity: Stabilized formulations and methods for linear triangles and tetrahedra

A new Variational Multiscale framework for finite strain incompressible elasticity is presented. Significant contributions in this work are: (i) a systematic derivation of multiscale formulations that include the classical F method as a particular subclass, (ii) an error estimation procedure for nonlinear elasticity that emanates naturally from within the present multiscale framework, and (iii)...

متن کامل

Abstract Multiscale–hybrid–mixed Methods

MULTISCALE–HYBRID–MIXED METHODS ALEXANDRE L. MADUREIRA Dedicated to Leo Franca, in memoriam. ABSTRACT. In an abstract setting, we investigate the basic ideas behind the Multiscale Hybrid Mixed (MHM) method, a Domain Decomposition scheme designed to solve multiscale partial differential equations (PDEs) in parallel. As originally proposed, the MHM method starting point is a primal hybrid formula...

متن کامل

Consistent Newton-Raphson vs. fixed-point for variational multiscale formulations for incompressible Navier-Stokes

The following paper compares a consistent Newton-Raphson and fixed-point iteration based solution strategy for a variational multiscale finite element formulation for incompress-ible Navier–Stokes. The main contributions of this work include a consistent linearization of the Navier–Stokes equations, which provides an avenue for advanced algorithms that require origins in a consistent method. We...

متن کامل

Coupling non-conforming discretizations of PDEs by spectral approximation of the Lagrange multiplier space

This work focuses on the development of a non-conforming domain decomposition method for the approximation of PDEs based on weakly imposed transmission conditions: the continuity of the global solution is enforced by a discrete number of Lagrange multipliers defined over the interfaces of adjacent subdomains. The method falls into the class of primal hybrid methods, which also include the well-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013